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In 2021, we published our work on “Missing Data Patterns: From Theory
to an Application in the Steel Industry” at the 33rd International Conference
on Scientific and Statistical Database Management [Bec+21], available online
here: https://dl.acm.org/doi/proceedings/10.1145/3468791.

Due to page limitations, we were not able to present our research in full
length and therefore, would like to provide supplemental material in this docu-
ment to facilitate repeatability and further evaluations.

This document consists of three sections: Section 1 covers an extend version
of the related work, which supports further research in this direction, Section 2
repeats our approach on detecting missing data (MD) patterns and details on
the two algorithms iBBiG and LBM, and Section 3 outlines the full original
evaluation of our approach. All definitions of the formalism refer to the original
paper and are not available in this document. For any further inquiries, please
do not hesitate to contact us.

1 Overview on Missing Data Patterns

An observed data set Dn×m is considered to be tabular and consists of n rows
(observations) and m columns (variables). Unless mentioned otherwise, we as-
sume rows to be independent and identically distributed (i.i.d.). The missing-
ness of values in D is identified by binary matrix Mn×m, where mij = 1 if dij
is missing, and mij = 0 otherwise. The index i refers to rows from the row set
I, and the indices j and l refer to columns from the column set J . The D can
be partitioned into D = (X,Y), where Xn×l = (X1, ...,Xl) stands for the set
of fully observed variables and Yn×k = (Y1, ...,Yk) stands for the set of vari-
ables containing MD, such m = l + k. The M can be partitioned accordingly,
M = (MX,MY), with zero-valued MX and binary MY, whose columns refer
to Bernoulli processes (cf. [Cox17]).

There is no standardized list or agreement on the meaning of MD patterns
in literature (cf. [BH14; LHH03; IS08; LR02; SG02]). Van Buuren [Van07]
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introduces a MD pattern briefly as M without any further explanation. En-
ders [End10] describes a MD pattern as “a configuration of observed and miss-
ing values in a data set”. Independently of the author, at least an agreement
that the MD patterns should be checked and considered, holds for all. In a re-
cent work, Fernstad [Fer19] argues that a proper understanding of MD patterns
and the distribution of M can improve the quality of conducted analysis. She
describes three general patterns of missingness [Fer19]:

• Amount Missingness indicating the proportion of missing observations per
variable,

• Joint Missingness related to the co-occurrence of MD among two or more
variables, and

• Conditional Missingness denoting an existing dependency between some
components of M and X.

According to the recognized literature (cf. [Rub76; Van07]), the last mentioned
type is rather related to the MD mechanism, which is defined as the dependence
between data and their missingness. In the following, we discuss MD patterns
that commonly appear in related work as well as three patterns that are of
special interest for the industrial domain: file-matching pattern (FMP), line
pattern (LP), and multi-rate pattern.

Figure 1: Missing data patterns
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1.1 Common Missing Data Patterns

1.1.1 Univariate and multivariate pattern

The univariate pattern in Figure 1(a) is the simplest case, where exactly one
variable in D contains MD [IS08; LR02; SG02]. Although Little & Rubin [LR02]
described the multivariate pattern in Figure 1(b) separately, we claim that it can
be seen as a multivariate generalization of the univariate case. An example for
these patterns from the industrial domain is a failure of one or several sensors,
which jointly stop recording measurements after a specific point in time.

1.1.2 Latent variable pattern

The latent variable pattern in Figure 1(c) is typical for generative models, where
the latent variable ξ is missing for all observations, because its existence is only
assumed. It is not necessary to understand this MD pattern as a problem,
because it is used intentionally [End10]. Little & Rubin [LR02] mention that it
can be useful to treat certain problems with completely unobserved variables to
estimate the parameters of generative models using the methods of statistical
inference.

1.1.3 Monotone pattern

The monotone pattern in Figure 1(d) is frequently observed in the social sci-
ences, where participants tend to leave a study that is conducted over time [BH14;
LR02]. This pattern has no significant relevance in industrial data [Ehr+18].

1.1.4 Planned pattern

The planned pattern in Figure 1(e) is common in designed experiments, where
recording of all variables jointly is impossible, too expensive or causes bur-
den [End10]. The missingness is in this case under the control of investigator.

1.1.5 General pattern

The general pattern in Figure 1(e) is the default case that is usually found
in practice and is also denoted as “arbitrary pattern” (cf. [SG02; LHH03]) or
“generalized pattern” (cf. [BH14]). It is also the most difficult pattern to handle,
because it is typically a combination of more MD patterns together with non-
systematically missing values.

1.2 Industry-Specific MD Patterns

In addition to MD patterns listed above, we want to highlight patterns that
are of special importance in the industrial domain: FMP, LP, and multi-rate
pattern.
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1.2.1 File matching pattern

The FMP in Figure 1(g) was introduced by Little & Rubin [LR02] as a case
when two variables are never observed jointly. We argue that FMP is of special
importance nowadays, when data is queried from multiple information systems.
The FMP is typically caused by joining data from heterogeneous sources with
different column dimensions. This yields blocks of MD over several variables,
which can be viewed as a generalization of how FMP was originally introduced
in [LR02].

1.2.2 Line pattern

The term “line pattern” was coined in [Ehr+18] to describe the previously men-
tioned “sensor breakdown” pattern from [IS08] more generally. The LP, which
can be after suitable rearrangements of columns seen as a “line” of MD, is typ-
ically caused by a breakdown of multiple sensors (cf. [IS08]) due to extreme
physical state in the process environment. Based on our experience gained
from analyzing data from the steel industry by voestalpine Stahl GmbH, we
distinguish between three LP subtypes, depending on the occurrence of MD, as
illustrated in Figure 2.

Figure 2: Different types of line pattern

Based on the sensitivity of communicating sensors, the LP can be either
perfect, noisy, or asymmetric. A perfect LP refers to the joint missingness of
a set of observations over a set of variables, typically communicating sensors
measuring the same physical instance. The variables affected by a perfect LP
are “perfectly” associated in terms of their (jointly) missingness on a subset of
observations. In case of a noisy LP, the affected variables are highly but not
perfectly associated, meaning that a missing value in one sensor is not necessarily
accompanied with the missingness of all other related variables. The asymmetric
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LP refers to a set of physically related variables (communicating sensors), when
some of them are missing more often than others, which corresponds to different
sensitivity of the respective sensors.

1.2.3 Multi-rate pattern

Another common MD pattern from the industrial domain is the multi-rate pat-
tern introduced by [IS08] (cf. Figure 1(f)), where the variable Y1 is measured
less often and consequently, regularly reoccurring MD are produced. In accor-
dance to [IS08], we agree that it doesn’t necessarily represent an error, since the
values are not observed intentionally.

1.3 Summary on MD Patterns

Although some MD patterns in Figure 1 have similar appearance after aligning
the rows, we argue that it is still necessary to distinguish them. Specifically,
the following properties add understanding for their distinction: amount of MD
(e.g., 1–10 % in LP vs. ˜90 % in multi-rate pattern), reason for MD (e.g.,
intention for planned pattern, participant’s drop-out for multivariate pattern,
DB query for FMP, and extreme temperature for LP), as well as the type of
association between affected variables. Since the detection of MD patterns is
a preceding step to deleting or imputing MD, it is important to distinguish
between the types of patterns to select an appropriate action.

The fact that several MD patterns in Figure 1 have a similar appearance also
illustrates the inconsistency in MD research due to the absence of a common
formalization.

2 Approach to Detect MD Patterns

Traditional strategies for detecting MD patterns are often not appropriate for
data of higher dimensionality, which is a rule rather than an exception in au-
tomatically collected industry data. Examples for such strategies are the visual
inspection of an aggregation plot of MY or the manual verification of differ-
ent combinations between missing and observed components of the data [LR02;
Van07]. Even the investigation of MY with “only” 20 variables can yield up
to 220 combinations, making such manual strategies for MD pattern detection
hardly feasible.

Therefore, we propose a new approach to automate detection of any MD
pattern, with a particular focus on patterns appearing in industrial applications.
The core idea is to discover significant regularities in the structure of MY.
Figure 3 illustrates an iterative procedure with the following four steps:

Step (1) As a prerequisite for MD pattern detection, D is uniquely trans-
formed to M = (MX,MY) using the knowledge about the encoding
of MD.
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Figure 3: Approach to detect MD patterns in the steel industry

Step (2) To detect global MD patterns according to Def. 3.1 in [Bec+21], as-
sociations and dependencies among MY columns are investigated.
Significant relations found are used as an input for hierarchical clus-
tering or a dependency graph to effectively identify subset(s) of vari-
ables in accordance with Def. 3.1 in [Bec+21]. While an overview on
the measures with their properties is provided in Figure 3, they are
introduced in Section 2.1 and evaluated in Section 3.3.2.

Step (3) To detect local MD patterns according to Def. 3.5 in [Bec+21], two
biclustering methods are introduced in Section 2.2: Ensemble Biclus-
tering using iterative Binary Biclustering for gene sets (EB+iBBiG)
and the Latent Block Model (LBM). Biclustering finds associations
simultaneously in rows and columns of MY, which makes it suitable
to detect local MD patterns. Both methods are evaluated and com-
pared in Section 3.3.3. The results from step (2) can be used to select
proper setting for the biclustering.

Step (4) The reported results are used to refine the data set, to reformulate
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database queries, or to impute MD.

While the entire approach is presented in Figure 3, the focus in this paper
is on step (2) and (3). Step (1) is implemented according to the requirements
for voestalpine Stahl GmbH (details in Section 3.3.1) and step (4) is non-trivial
and therefore planned as follow-up research to this work.

2.1 Global MD Pattern Detection

To identify global MD patterns according to Def. 3.1 in [Bec+21] and step
(2), the dependencies and associations among the MY variables need to be
evaluated. In the following subsections, we discuss the following five measures:
chi-square test (χ2), Φ coefficient, Jaccard index (JI), Kulczynski index (KI),
and Dice index (DI).

The two well-known dependency measures χ2 and Φ were selected to eval-
uate Def. 3.1 in [Bec+21] (→ χ2) and to interpret the properties of the MD
pattern (→ Φ). As outlined in Figure 3, the latter three measures (JI, KI,
DI) focus on the detection of associations. JI and KI are used to detect the
co-occurrence of MD, which refers to industry-specific MD patterns or is an
indicator to consider joint imputation for MY. DI evaluates the symmetry of
MD patterns, which could be either used for their interpretation, or the order
in which the variables in MY should be imputed. Since JI, KI, and DI do not
follow any well described probability distribution, there is no tabulated test to
evaluate their statistical significance. To resolve this issue, we use a bootstrap
resampling method introduced in Appendix A.1.

Since all five measures are intended for pairwise comparison, we use them
in combination with hierarchical clustering or a dependency graph to identify
subset J (cf. Def. 3.1 in [Bec+21]). Hierarchical clustering groups a pair of
variables with the minimum distance in each clustering step [JMF00] and can
also be used for the automated analysis of the dependency graph. The depen-
dency graph provides a more intuitive visual presentation of the results (e.g.,
for discussion and verification with a customer) and provides further insights
into the missingness structure. Both methods (i.e., hierarchical clustering and
the dependency graph) allow the automated detection of global MD patterns
by “cutting” the graph or dendrogram with a threshold for the strength of the
given association.

The following subsections discuss the properties (completeness from Def. 3.2
in [Bec+21], minimality from Def. 3.3 in [Bec+21], and symmetry from Def. 3.4
in [Bec+21]) and suitability of five measures for our use case: χ2, Φ, JI, KI,
and DI. To achieve a common terminology, we derived a functional form for
each measure from the occurrence of MD for an arbitrary pair of MY variables
(summarized in Table 1).

2.1.1 χ2-test

The χ2-test [Coc52] can be applied to determine whether two binary variables
are dependent. Thus, Def. 3.1 in [Bec+21] can be directly tested by applying
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Table 1: Frequency table, where n11/n00 indicate the number of cases when both
variables j, l are missing/observed jointly and n10/n01 indicate the number of
cases when one variable (j or l) is missing and the other is observed

M.l = 1 M.l = 0
M.j = 1 n11 n10 n1+ = n10 + n11

M.j = 0 n01 n00 n0+ = n00 + n01

n+1 = n01 + n11 n+0 = n10 + n01

the χ2-test to all pairs of MY variables. For testing the null hypothesis of
independence (= H0), the χ2-statistics is used:

χ2 =
∑
i,j

(nij − µij)2

µij
,

where µij
H0=

ni+n+j

n = E(nij) under the assumption that H0 is true [Coc52].
The statistics is under H0 approximately χ2

df=1 distributed, and the H0 is re-
jected in favour of alternative that these variables are associated if p-value =
P (χ2 ≥ χ2

df=1,1−α|H0 = true) ≤ α, where α is a predefined significance level,
typically α = 0.05.

2.1.2 Coefficient Φ

For any pair of MY variables the coefficient Φ is calculated as:

Φ(M.j ,M.l) =
n11n00 − n10n01√
n1+n0+n+1n+0

and its value as well as interpretation is the same as by Pearson’s correlation
coefficient [Cra99]. Coefficient Φ takes values from 〈−1,+1〉 and evaluates both
the strength and direction of the linear dependency between variables. Pairwise
independence of variables implies Φ = 0, but observing Φ = 0 does not generally
imply independence. Coefficient Φ is functionally related to the χ2-statistics,

Φ2 = χ2

n , thus its significance can be evaluated in the same way. The Coefficient
Φ is used in our approach to detect arbitrary global MD patterns. In addition
to χ2-test, Φ evaluates the direction and the strength of the association, which
supports the interpretation of the detected patterns.

2.1.3 Jaccard index

Jaccard index (JI) is a similarity measure defined as the ratio between the
cardinalities of the variables’ intersection and the union [Jac12]:

JI(M.j ,M.l) =
n11

n11 + n10 + n01
.

If these cardinalities are equal, there is a perfect overlap between events of MD
of the two variables and JI = 1. Contrary, JI is minimal and equals 0, if the
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variables never had MD jointly. The JI is therefore suitable for the identification
of co-occurrence between MD events, which refer to a positive association, as it
is the case with LP, FMP, or multivariate pattern. However, JI is not suitable
for the detection of disagreement (negative) relationships, such as depicted in
Figure 1(e).

2.1.4 Kulczynski index

The Kulczynski index (KI) is a similarity measure defined as an average of two
conditional probability estimates [Des13]:

KI(M.j ,M.l) =
P̂ (M.j = 1|M.l = 1) + P̂ (M.l = 1|M.j = 1)

2

=
1

2
(

n11

n11 + n01
+

n11

n11 + n10
).

Similarly to JI, the KI evaluates pairwise similarity based on the co-occurrence
and synergy of MD and has the advantage of probabilistic interpretation.

2.1.5 Dice indices

The Dice1 and Dice2 indices are related to the two terms of KI, denoting the
respective estimates of conditional probability:

Dice1(M.j ,M.l) = P̂ (M.j = 1|M.l = 1) =
n11

n11 + n01
,

Dice2(M.j ,M.l) = P̂ (M.l = 1|M.j = 1) =
n11

n11 + n10
.

Since the triangular inequality does not hold for any of these indices, they can-
not be considered as a proper similarity measures. Comparing Dice1 and Dice2
indicates whether pairs of related variables are associated symmetrically accord-
ing to Def. 3.4 in [Bec+21]. The monotone and asymmetric LP are examples of
non-symmetric patterns for which Dice indices are particularly useful.

2.2 Local MD Pattern Detection

In this section, we discuss two biclustering methods for the detection of local MD
patterns according to Def. 3.5 in [Bec+21] and step (3) in Figure 3. Biclustering
is an unsupervised method simultaneously grouping rows and columns of a data
set [Kas+16], which make it suitable to detect local MD patterns. A bicluster
B(I,J ) is a submatrix of data defined by a subset of rows, I ⊆ {1, ..., n}, which
satisfy certain similarity constrains on a subset of columns J ⊆ {1, ...,m}.

In our application, we found biclustering highly effective to identify data
cells dij missing due to either a LP or a FMP (see Section 3). The parts of MY

affected by a FMP typically built a perfect concentrated bicluster consisting of
only 1’s. Further, biclusters corresponding to a LP are dense (having a large
proportion of 1’s) with possibly containing a 0-valued noise, which depends on
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the type of the LP. Both FMP and LP yield biclusters with a strong positive
association between the respective subsets I and J . The biclusters consist-
ing of mostly 0’s are of little importance for MD pattern detection, since they
correspond to the observed part of the data.

Although several biclustering approaches have been proposed, little of them
exist for binary data. One of the most widely used binary biclustering algorithm
is BIMAX (cf. [Pre+06]), where the objective is to identify perfect biclusters
of the maximal size. BIMAX is not useful for our application since zero-valued
cells might appear within biclusters referring to local MD patterns. There-
fore, we compared and evaluated the following two biclustering techniques: iB-
BiG [Gus+12] and Latent Block Model [GN03]. The iBBiG algorithm is suitable
for the fast extraction of dense biclusters from a sparse binary matrix, which
makes it particularly useful for the detection of positively associated MD pat-
terns. We applied iBBiG within the framework of ensemble biclustering (EB)
to increase the robustness of the result and refer to the combination of both
techniques in the following as EB+iBBiG. Second, we evaluated the LBM –
which aims to identify the distribution of MY – to detect arbitrary types of
MD pattern.

2.2.1 Ensemble Biclustering using iBBiG

The iBBiG (iterative Binary Biclustering of Gene sets) was proposed as a
meta-analytic tool for discovering associations in sparse binarized genetical data
sets [Gus+12]. iBBiG has several features that make it suitable for our work: (a)
it extracts dense biclusters from the data, (b) it allows noise within biclusters,
and (c) it allows overlapping biclusters [Gus+12]. In contrast to the majority
of biclustering methods, a priori knowledge of the number of biclusters is not
required. The iBBiG algorithm is an heuristic iterative method that consists
of 3 main steps: (i) bicluster fitness score, (ii) heuristic search based on a ge-
netic algorithm (GA) to effectively identify the biclustering solution in a high
dimensional space, and (iii) iterative extraction to mask the signal from already
detected biclusters [Gus+12].

The algorithm starts by randomly selecting two columns of MY, which are
then used to select highly associated rows to form an initial bicluster. Following,
a fitness score SB (based on the size and homogeneity) is calculated for each
inital bicluster to evaluate its quality. To illustrate the calculation of the fitness
score, we assume that B∗(Ir,Jc) is an initial bicluster, having r = |Ir| rows
and c = |Jc| columns, where 2 ≤ c ≤ k. The following quantities are calculated
for all rows to obtain SB∗ :

• The estimate of the probability of association between the i-th row and
columns of B∗(Ir,Jc):

p̂i =
1

c

∑
j∈Jc

mij . (1)

• The entropy of p̂i:

Hi = −p̂ilog2p̂i − (1− p̂i)log2(1− p̂i). (2)
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• The fitness-score of the i-th row:

Si =

{
WiB∗(1−Hi)

α if p̂i > 0.5

0 otherwise.
(3)

The SB∗ is then evaluated as: SB∗ =
∑
i Si. The parameter α ∈ 〈0.1, 1〉

from Eq. 3 scales the score and by default α = 0.3, which is according to
simulation studies by the authors optimal [Gus+12]. The weight term WiB∗

can be expressed as WiB∗ =
∑
j∈Jc

wij , where the entire weight matrix W is

initialized by MY.
The procedure continues with the GA to optimize the growth or reduction

of the biclusters with respect to SB∗ . The algorithm alternates between the
GA and recalculation of SB∗ until the score stagnates for a specific number of
iterations and the final bicluster is identified. The iterative extraction allows to
find more than one bicluster in MY. Once a bicluster B∗(Ir,Jc) is identified,
the respective weights of W are subtracted according to

Wij ←Wij(1− (1−Hi)
α) ∀j ∈ Jc (4)

and the entire procedure is applied again. Gusenleitner et al. [Gus+12] suggest
to specify an upper bound for the expected number of biclusters since iBBiG
terminates automatically when no more bicluster can be found [Gus+12]. We
use the number of global MD patterns from step (2) as upper bound of biclusters
to be identified.

Since the results of iBBiG are influenced by random initialization as well as
by a heuristic GA, we applied the algorithm within the framework of EB [Shi+10],
to increase the robustness of the solution. The core idea of ensembling is to run
the desired algorithm multiple times under different starting seeds and/or pa-
rameter settings and subsequently to identify a hierarchy of solutions based on
their pairwise similarity. Finally, robust biclusters are identified by intersecting
the subsets of the solutions that satisfy certain homogeneity constrains. For our
application, we used a similar procedure as proposed in [Kha13] and applied EB
with iBBiG as follows:

• iBBiG is executed N -times to identify K biclusters in each run.
• The results are combined into a bicluster set.
• All identified biclusters are pairwise compared with the JI, yielding a sim-

ilarity matrix.
• Based on the JI-matrix, a dendrogram of solutions is created using hier-

archical clustering with complete linkage.
• Groups (= clusters, branches) of similar biclustering solutions are identi-

fied using a suitable similarity threshold.
• Robust biclusters are identified as an intersection of groups with sufficient

cardinality C.
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2.2.2 Latent Block Model

As a second approach to detect MD patterns from MY, we evaluated binary
LBM, originally introduced in [GN03]. In contrast to iBBiG, the objective of
LBM is to identify the underlying distribution of MY by applying a mixture
model jointly on its rows and columns. Therefore, LBM is very suitable for our
application, since knowledge of the MY probability distribution is key for MD
pattern recognition. As a result of LBM, MY can be segmented into several
exclusive row- and column-classes which jointly partition MY into homogeneous
blocks (= biclusters, co-clusters). More specifically, the LBM assumes existence
of partitioning of both index sets I and J into Q-row and L-column classes,
which jointly express a block-structure that can be viewed as a compressed
information about the distribution of MY. Thus, it can be used to identify
arbitrary local MD pattern according to Def. 3.5 in [Bec+21]. For example,
dense blocks can be used for the detection of rows and columns affected by
multivariate pattern, FMP or different types of LP. Further, resulting blocks
consisting of (mostly) 0’s can be interpreted as parts of complete data which
are unlikely to be a part of any local MD pattern. The analysis of dependencies
between individual column classes can be used to describe global MD patterns as
well, which makes LBM universally applicable in terms of MD pattern detection.

For the LBM specification, it is key to determine reasonable values for Q
and L. For this purpose, we suggest to fit the LBM for each combination from
the grid based on the number of global MD found in step (2), and to select the
combination with the largest Bayesian information criterion (BIC):

BIC(Q,L) = maxθlogf(MY;θ)− Q− 1

2
log(n)

− L− 1

2
log(k)− QL

2
log(kn),

(5)

where the first term is substituted by the result from the fitted model (cf. [Ker+15]).
Since the details about statistical estimation of the LBM are beyond the scope
of this paper, we refer to the literature [BIG14; GN13; NH98].

3 Implementation and Evaluation

In this section, we describe the application scenario and the employed data
sets in Section 3.1, the prototypical implementation in Section 3.2, and the
conducted experiments in Section 3.3. We conclude with a summary of the
findings.

3.1 Application Scenario with Steel Data

In the steel mill of voestalpine Stahl GmbH, raw steel is casted into slabs. Those
slabs are about 12 meters long and 200 millimeters thick. The slabs are heated
and rolled in the hot rolling mill to receive steel coils with the desired thickness
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for further processing. Such a steel coil can be rolled out up to 0.7 mm thickness
and an average length of 1,600 meters. After the hot rolling, the steel is cooled
down with water and wound into coils [Ehr+18].

The data sets used for our empirical evaluation contain sensor data from
the hot rolling mill, which includes mainly temperature measures and informa-
tion about the water cooling system. We faced the following challenges and
characteristics of the data:

• The provided data sets can be attributed as Big Data since our evaluation
data set, which represents only an excerpt of the entire hot rolling mill
measurement DB, contains 193,700 records and 557 variables. Such large
amounts of data highlight the need for automated approaches and novel
ways to display the results.

• The data is automatically collected sensor data, which is why a lot of
suggestion from MD research from social sciences (e.g., [LHH03]) cannot
be applied.

• Since we mostly deal with numerical data, approaches for survey MD that
include suggestions how to handle textual or discrete data are not relevant.

Voestalpine Stahl GmbH provided 3 data sets for our research, which are
summarized in Table 2. DS1 contains process data from the steel mill with no
knowledge about the causes of the missingness or the type of MD patterns. It
was used mainly for the investigation of suitable techniques for the analysis of
MD in large industrial data sets.

Table 2: Evaluation data sets, where k is the number of columns in MY and
Sim.=Simulated
DS Rows Columns k Sim. Patterns Noise

DS1 193,700 557 22 No Unknown No

DS2 2,641 1,125 73 Yes 3 FMP, 4 LP 5 %

DS3 2,500 1,000 108 Yes 18 LP 5 %

DS2 and DS3 contain several noisy LPs and FMPs simulated by domain
experts from voestalpine Stahl GmbH to evaluate our approach. Since knowl-
edge of the “underlying truth” about MD patterns is usually not available in
practice, we decided to conduct a simulation study to accurately evaluate our
results. The amount of the noise in the simulated LPs varied from 0 to 80 %.
MY of DS2 and DS3 contained 49 and 72 signal variables respectively, which
follow one of the simulated patterns, and additionally 24 and 36 noisy variables,
respectively, which do not follow any specific MD pattern and consist of 5 %
binary noise only. 5 % background noise was added to the signal variables to
assess the extent to which individual algorithms extract the “patterns” from
the “noise”. According to the domain knowledge of experts from voestalpine
Stahl GmbH, there is usually no or a rather small proportion (0–3 %) of noise
in the variables that follow an industry-specific MD pattern. Therefore, the 5 %
noise used for evaluating the robustness of our method, reflects the worst case
scenario for our application domain.
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For both DS2 and DS3, the description of the true MD patterns was provided
to us post hoc within the reference matrices MY

ref, whose cell (i,j) is equal to
1, if the corresponding cell of MY belongs to some of the LP/FMP simulated,
and equals 0 otherwise, i.e., corresponding cell is either complete or noisy, i.e.,
missing non-systematically. For a clear presentation of the results, the names of
variables following some MD patterns begin with prefix “x” whereas the noisy
variables begin with “n”.

3.2 Implementation Details

Our approach has been implemented in R. The most important packages are:
biclust [Kai+18] as the basis package to apply biclustering in R, iBBiG [GC19]
to apply iBBiG, superbiclust [Kha14] since it implements the concept of En-
semble Biclustering [Kha14], and the package blockcluster [SIG17] for the
application of the LBM. Further, we used pheatmap [Kol19] to visualize the
missingness matrices and qgraph [Eps+12] to plot the dependency graphs. The
implementation has been successfully deployed and tested at the statistical de-
partment of voestalpine Stahl GmbH.

3.3 Experiments and Evaluations

In this section, we discuss the application of our MD pattern detection approach
with a specific focus on detection of variables and observations affected by LP
and FMP. However, most of the steps of our analysis are applicable to identify
any kind of MD pattern. All experiments were conducted with an Intel core
i7-8700 CPU, 3.2 GHz, and 32 GB RAM. The analysis of DS1, DS2, and DS3
follows the steps described in Figure 3.

3.3.1 Data Transformation

For step (1), the MY was obtained for each data set using knowledge about
the encoding of MD by voestalpine (here: -99). Although existing metrics
(cf. [Hin02]) to measure missing data are often restricted to the detection of
null values, in practice, also default values such as “01/01/2000” or “NaN”
values need to be considered. Our real-world evaluation yielded an interesting
insight, which underpins this statement: during the transformation of DS2, we
discovered (initially unknown) NA values, which were all related to FMPs (B2.1,
B2.2, and B2.7 in Table 6). This step deserves more attention in future research.

3.3.2 Detection of global MD patterns

For step (2), we investigated the global MD patterns. Since no specific MD
patterns were expected for DS1, we first evaluated the correlation, which is the
most widely applicable measure from Section 2.1. The only significant value of
Φ = 0.35 was found for {x224, x245} and refers to a positively associated global
MD pattern. Further, we investigated whether some variables tend to have MD
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jointly using KI, which has the advantage of probabilistic interpretation. Fig-
ure 4 shows the dependency graph of the corresponding similarity matrix. The
variables are depicted as the nodes and the edges refer to significant associations
between them. A strong association corresponds to a short distance between
the nodes and a saturated color of the edge. The most interesting finding is that
KI(x224, x245) = 0.37, which refers to a high probability that values in x224
and x245 are missing jointly and confirms the pattern detected by correlation.
Further, rather weak associations were identified for {x196, x555}, {x508, x90},
{x80, x245}, and {x23, x244}. All pairs of associated variables correspond to
global MD patterns which are symmetric and minimal. Only {x196, x555} and
{x23, x244} are also complete.

Figure 4: Dependency graph based on Kulczynski similarity for DS1

For DS2, we used KI and DI, since both are suitable to detect LPs and FMPs,
which were expected to be present in this data set. Figure 5 shows the directed
dependency graph based on DI. Table 3 summarizes the identified global MD
patterns in DS2, which are all minimal and not complete. We further determined
that GP1, GP2, and GP3 contain pairs of variables with significant difference
in Dice indices (cf. Figure 5), which means that they are not symmetric.

With an increasing number of variables, DS3 (having 108 variables in MY)
clearly showed the limitations of the dependency graph visualization, which is
why hierarchical clustering is better suited for such use cases. Figure 6 shows
the cluster dendrogram based on KI matrix, which yields 17 global MD patterns
when cutting the height at a similarity level of 0.8, meaning that respective pairs
of variables likely have MD jointly. All of these patterns are minimal. The pair
{x632, x86} on the absolute left side of the dendrogram is the only complete MD
pattern we found, since its variables are completely dissimilar to the remaining
ones. No asymmetric patterns were identified using Dice indices.
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Figure 5: Directed dependency graph based on Dice indices for DS2

3.3.3 Detection of local MD patterns

Our procedure continues with step (3), the detection of local MD patterns using
EB+iBBiG and LBM. The evaluation focuses on the detection of simulated LPs
and FMPs, which were of primary interest for our company partner. LPs and
FMPs can also be described as positively associated local patterns or “dense”
biclusters.

Evaluation setup. We use the knowledge about the number of global pat-
terns from step (2) to specify: (a) an upper bound for the expected number
of biclusters for iBBiG, as well as (b) a range for the column classes for the
LBM. Table 4 summarizes the setup of the EB+iBBiG parameters, which were
introduced in Section 2.2.1, for all three data sets and includes the number of
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Table 3: Global MD patterns found in DS2
Global
Pat-
tern

Variables Sym-
me-
try

GP1 x182, x887, x103, x957, x362, x173, x828,
x195, x631, x586, x579

No

GP2 x377, x1070, x558, x919, x668, x288, x399,
x277, x618

No

GP3 x277, x545 No
GP4 x535, x1112, x731, x128, x1019, x769, x617,

x798, x364, x433
Yes

GP5 x534, x369, x1022, x205, x1128, x342,
x1002, x251, x755

Yes

GP6 x330, x432, x491, x554, x587, x737, x1074 Yes
GP7 x371, x176 Yes

Figure 6: Hierarchical clustering based on Kulczynski similarity for DS3

identified robust biclusters. Since none or only little local MD patterns were
expected to be present in DS1, both, the number of iBBiG repetitions (N) and
the number of biclusters to store from each iBBiG run (K) were chosen rather
small. Since both, DS2 and DS3, were expected to contain a larger number
of (simulated) local MD patterns, the values of N and K were set accordingly
higher. The cardinality threshold C equal to K and a strict JI threshold of 0.8
guarantee that each resulting bicluster is robust since it needs to occur in each
iBBiG run.
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Table 4: Parametrization of EB+iBBiG based on the identified global MD pat-
terns

DS N K JI Threshold C Identified Biclusters
DS1 5 5 0.8 5 4
DS2 30 15 0.8 15 7
DS3 30 20 0.8 20 18

Similarly, using knowledge about the number of global MD patterns found,
we setup the ranges for the row- and column-classes Q and L for which the
LBM should be estimated (cf. Table 4). The optimal LBM for each data set
was identified according to maximal BIC (cf. Eq. 5).

Table 5: Parametrization of LBM based on the identified global MD patterns
DS Q L Optimum BIC
DS1 3:7 3:7 - -
DS2 7:16 7:16 Q = 8, L = 10 - 44 771.91
DS3 15:25 15:25 Q = 20, L = 21 - 64 558.54

Results. Table 6 shows the result of our local MD pattern detection by listing
all robust biclusters (Bicl.) discovered with EB+iBBiG. The set of associated
variables, the number of rows (|I|), and the mean to evaluate the homogeneity
is provided for each bicluster. It can be seen that all simulated MD patterns
(7 for DS2 and 18 for DS3) have been identified correctly as robust biclusters,
without any false positives. In DS1, we identified 4 non-simulated MD patterns.

Biclusters with mean=1 represent perfect homogeneous biclusters (e.g., B1.1,
B2.1, or B3.1), where variables are missing always jointly. Biclusters with
mean<1 represent dense biclusters, which refer to strong positive local pat-
terns with co-occurring MD.
While the execution time of EB+iBBiG was in the order of a few minutes for

each data set, the LBM for DS1 did not converge for any of the combinations
of Q and L. A possible reason is the very low incidence of MD (≈ 2.3 %),
which does not form a homogeneous block structure even though several global
MD patterns had been detected. However, LBM aims to detect exactly such
block structures. For DS2 and DS3, the optimal block structure was identi-
fied according to the maximal value of BIC (-44,771.91 for DS2, and -64,558.54
for DS3). Tuning all combinations of Q and L to find the optimal model re-
quired approx. 10 hours (i.e., 20-30 minutes per combination) per data set.
Combinations with smaller values for Q and L required exponentially shorter
computation time than combinations with larger values. However, if a suitable
model for the value of (Q,L) is already provided, e.g., due to the analysis of
global MD pattern, or sub-optimal solutions are allowed, the estimation takes
only a few minutes on a standard PC. We refer to the beginning of Section 3.3
for the used hardware settings.

To illustrate identified local MD pattern, Figure 7 shows a heatmap of the
two perfectly homogeneous biclusters B2.1 (which corresponds to a LP) and
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Table 6: Robust biclusters found in DS1, DS2, and DS3 using EB+iBBiG
DS Bicl. Variables |I| Mean
DS1 B1.1 x80, x244 924 1.00

B1.2 x224, x245 490 1.00
B1.3 x19, x80, x508 935 0.67
B1.4 x18, x244, x508 813 0.67

DS2 B2.1 x1112, x1019, x731, x364, x798,
x433, x535, x128, x769, x617

258 1.00

B2.2 x1074, x432, x330, x737, x587,
x491, x554

162 1.00

B2.3 x182, x578, x103, x828, x957,
x195, x362, x887, x586, x173,
x631

180 0.66

B2.4 x1022, x205, x342, x369, x755,
x1002, x534, x1128, x251

72 0.96

B2.5 x545, x377, x277 318 0.72
B2.6 x558, x377, x399 201 0.73
B2.7 x176, x371 79 1.00

DS3 B3.1 x337, x456, x740, x827, x838,
x848

274 1.00

B3.2 x439, x625, x715, x984 258 1.00
B3.3 x232, x320, x397, x419, x769 125 1.00
B3.4 x205, x344, x805, x808, x819,

x856
162 0.77

B3.5 x263, x391, x478, x836 118 1.00
B3.6 x632, x86 234 1.00
B3.7 x168, x195, x624, x970 160 0.84
B3.8 x212, x220, x517, x723, x754,

x816
53 0.99

B3.9 x223, x315, x370, x399, x434,
x861

82 0.78

B3.10 x425, x683 123 1.00
B3.11 x145, x593 114 1.00
B3.12 x162, x175, x511, x670 50 1.00
B3.13 x76, x905, x947, x997 77 0.83
B3.14 x416, x770, 61 1.00
B3.15 x792, x948, 61 1.00
B3.16 x161, x491, x61 58 0.80
B3.17 x239, x298, x552, x713, x864 42 0.72
B3.18 x826, x885 33 1.00

B2.2 (which corresponds to a FMP), respectively. Figure 8 shows a comparison
between the heatmaps of the original and the rearranged (= co-clustered) MY

according to the optimal block-structure found for DS2 and DS3.

Result validation and method comparison. To evaluate the performance

of EB+iBBiG, we constructed a prediction matrix M̂Y
pred, whose cell (i,j) equals

1, if the corresponding cell of MY belongs to a detected robust bicluster, and

equals 0 otherwise. In case of LBM, the (i,j) cell of M̂Y
pred equals 1, if the

respective cell of MY belongs to a block having a mean> 0.5, and equals 0
otherwise. The selection of such a threshold allows to compare the results of the
LBM to EB+iBBiG, since iBBiG forms biclusters by selecting rows with p̂i > 0.5
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Figure 7: Robust biclusters B2.1 (left) and B2.2 (right) from DS2. The blue
color represents mij = 1 cells being detected as a part of a bicluster, red repre-
sents mij = 1 not being a part of a bicluster, and black is mij = 0

Figure 8: Visualization of the best LBM for DS2 (left) and DS3 (right). The
white color represents mij = 1 cells and black color represents mij = 0.

(cf. Eq. 3), which guarantees that the detected biclusters have a mean> 0.5. We

compared the M̂Y
pred of both algorithms to the reference matrix MY

ref, which was
provided by voestalpine Stahl GmbH post hoc to the evaluations and indicates
all “true” (i.e., simulated) MD patterns. Table 7 shows the confusion matrices,

which were obtained by comparing M̂Y
pred to MY

ref for each data set. Based

on the confusion matrix, we calculated BACC1, TPR2, and TNR3 for the final
evaluation, where the results are summarized in Table 8.

1balanced accuracy= sensitivity + specificity
2

2true positive rate=sensitivity= TP
TP+FN

3true negative rate=specificity= TN
TN+FP
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Table 7: Confusion matrices obtained by comparing detected local MD patterns

(M̂Y
pred) with the reference (MY

ref)

Method DS
Reference

mij = 1 mij = 0

EB+iBBiG
DS2

P
re

d
ic

te
d

mij = 1 180 143 4 633
mij = 0 375 7 642

DS3
mij = 1 259 919 1 742
mij = 0 235 8 104

LBM
DS2

mij = 1 180 470 5 148
mij = 0 48 7 127

DS3
mij = 1 259 902 3 530
mij = 0 252 6 316

Table 8 shows that EB+iBBiG reached better BACC and TPR. On the
other hand, slightly higher and almost perfect specificity was obtained with the
LBM, which produced only very few false positive cases. The lower sensitivity
of both approaches on DS2 was caused by an asymmetric LP, which contained
80 % noise (which made it difficult to detect) and was very large in contrast to
the other patterns (affecting 20 % observations over {x277, x288, x377, x399,
x558, x618, x668, x919, x1070}). This LP was only detected by EB+iBBiG (see
biclusters B2.5, B2.6 in Table 6) and not with the LBM since the mean of the
corresponding block cannot exceed the threshold of 0.5 due to the 80 % of noise
in the underlying pattern. The higher TPR of EB+iBBiG refers to its better
capacity in terms of industry-specific MD pattern detection.

Table 8: Comparison of biclustering algorithms
Data Algorithm BACC1 TPR2 TNR3

DS2
EB+iBBiG 81.02 % 62.25 % 99.79 %
LBM 79.02 % 58.06 % 99.97 %

DS3
EB+iBBiG 91.12 % 82.31 % 99.91 %
LBM 82.03 % 64.15 % 99.90 %

3.3.4 Discussion of the Experiments

For DS1, we identified several global and local MD patterns, which indicate the
co-occurrence of MD and might be valuable information for a joint imputation
of missing values. We plan to investigate the extent to which the runtime could
be reduced for the overall imputation process in future research.

The evaluations with DS2 and DS3 showed that all identified global patterns
correctly grouped sets of variables forming one of the simulated patterns. An-
other desirable result was that our approach assigned only signal variables “x”
and none of the noisy variables “n” (with only random MD) to a pattern.

Further, we conclude that biclustering is suitable to detect local MD pat-
terns, since in our application focused on the detection of LPs and FMPs, all
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for DS3, and all but one for DS2 of the simulated biclusters were detected reli-
ably. The single not detected bicluster corresponds to an asymmetric LP, which
consisted of 80 % noise and was much larger than the other biclusters. Thus,
lower TPR on DS2 was obtained for both approaches. While the TNR was
similar and greater than 99 % in all cases, EB+iBBiG outperformed the LBM
in terms of much higher sensitivity (81 % vs 79 % for DS2, and 82 % vs. 64 %
for DS3). We conclude, that EB+iBBiG is the preferable approach to detect
industry-specific MD pattern due to (i) comparable specificity, (ii) much better
sensitivity, (iii) short computational time, and (iv) because it is not necessary
to tune the parameters in contrast to LBM.

A Appendix

A.1 Significance of Association Measures

The p-value of any statistics T obs(D) observed on data D is defined as P (T (D) ≥
T obs(D)|H0 is valid) [Hal98], where T () denotes hypothetical true value of that
statistics. In our application, we test H0 of no association, H0 : T obs() = 0,
against H1 that T obs() significantly differs from 0 using columns M.j and M.l as
data. The approximate p-value can be calculated using the following procedure
inspired by the trial-shuffling test [Alb+15]:

1. Calculate T obs = T (M.j ,M.l)
2. For b = 1, ..., B:

I Sample with replacement from M.j vector
Mb

.j = (mb
1j , . . . ,m

b
nj)
′ of the same length.

II Sample with replacement from M.l vector
Mb

.l = (mb
1l, . . . ,m

b
nl)
′ of the same length.

III Calculate statistics on resampled data Mb
.j ,M

b
.l: T

b = T (Mb
.j ,M

b
.l)

3. Calculate approximate p-value =
∑

b I(T b≥T obs)

B , where I stands for the
indicator function.
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